skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Priest, Joshua D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Contagion dynamics on networks are used to study many problems, including disease and virus epidemics, incarceration, obesity, protests and rebellions, needle sharing in drug use, and hurricane and other natural disaster events. Simulators to study these problems range from smaller-scale serial codes to large-scale distributed systems. In recent years, Python-based simulation systems have been built. In this work, we describe a new Python-based agent-based simulator called CSonNet. It differs from codes such as Epidemics on Networks in that it performs discrete time simulations based on the graph dynamical systems formalism. CSonNet is a parallel code; it implements concurrency through an embarrassingly parallel approach of running multiple simulation instances on a user-specified number of forked processes. It has a modeling framework whereby agent models are composed using a set of pre-defined state transition rules. We provide strong-scaling performance results and case studies to illustrate its features. 
    more » « less
  2. Contagion dynamics on networks are used to study many problems, including disease and virus epidemics, incarceration, obesity, protests and rebellions, needle sharing in drug use, and hurricane and other natural disaster events. Simulators to study these problems range from smaller-scale serial codes to large-scale distributed systems. In recent years, Python based simulation systems have been built. In this work, we describe a new Python-based agent-based simulator called CSonNet. It differs from codes such as Epidemics on Networks in that it performs discrete time simulations based on the graph dynamical systems formalism. CSonNet is a parallel code; it implements concurrency through an embarrassingly parallel approach of running multiple simulation instances on a user-specified number of forked processes. It has a modeling framework whereby agent models are composed using a set of pre-defined state transition rules. We provide strong-scaling performance results and case studies to illustrate its features. 
    more » « less